Synthesis of a Protected (\pm)-Calicheamicinone Derivative by Sequential Introduction of Functionality into the Bicyclo[7.3.1]enediyne Core Structure

Philip Magnus,* Gregory F. Miknis, Neil J. Press, Didier Grandjean, G. Mark Taylor, and John Harling

Contribution from the Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712

Received March 7, 1997^{*}

Abstract

The core bicyclo[7.3.0]enediyne $\mathbf{3}$ has been synthesized from the protected cyclohexane-1,2-dione $\mathbf{6}$ and enediyne component 9 . Conversion of $\mathbf{2 0}$ into more highly functionalized enediynes was accomplished by oxidation and amination to give 27. Protection of 27, and conversion into 31, gave on treatment with $(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ the lactone 32, which was transformed into the trisulfide 39. All attempts to deprotect 39, using conditions that other workers successfully applied to similar substrates, only resulted in the cyclic sulfides $\mathbf{4 2}$ and 43 .

Introduction

The enediyne antitumor antibiotics have attracted a great deal of attention because of their unusual structures and potent biological activity. ${ }^{1}$ Notable contributions to their synthesis and in vitro mechanism of action have been made by Danishefsky, ${ }^{2}$ Nicolaou, ${ }^{3}$ Clive, ${ }^{4}$ and others. ${ }^{5}$ We have adopted an approach to their synthesis that uses $\eta^{2} \mathrm{Co}_{2}(\mathrm{CO})_{6}$-propargylic cation complexes to form the bicyclo[7.3.1]enediyne core structure. ${ }^{6}$

[^0]Here is reported the culmination of this strategy, resulting in the synthesis of a protected version of (\pm)-calicheamicinone $\mathbf{2}$, the aglycon of calicheamicin $\gamma_{1} \mathbf{1}$. The essence of our overall strategy has been to devise a sequence of reactions to convert the bicyclo[7.3.1]enediyne core compound $\mathbf{3}$ into $\mathbf{2}$, Scheme 1.

Retrosynthetic Analysis

Our initial research indicated that the bicyclo[7.3.1] enediyne core structure 3 could be assembled via the retrosynthetic pathway shown in Scheme 2. Addition of the lithioenediyne 5 to the mono-tert-butyldimethylsilyl enol ether of cyclohexane-1,2-dione 6 followed by oxidation should allow access to 4. An aldol reaction, initiated by conjugate addition to 4 , leads to 3. We anticipated that a Lewis acid mediated aldol reaction would result in a synclinal intermediate through chelation and give the correct 12β-hydroxyl stereochemistry shown in 3. ${ }^{7}$ The remaining steps involve the introduction of the carbamate at C-2, a carbonyl at C-3, and the allylic trisulfide at C-13.

We considered that allylic oxidation of 3 to give 7 would allow an amination process to take place via an additionelimination mechanism to give 8. The trisulfide functionality can be introduced using Wadsworth-Emmons chemistry, reduction and conversion into 2 using the sequence we published in 1989. ${ }^{8}$ This sequence of transformations has been used successfully by Danishefsky, Nicolaou, and Clive in their respective syntheses of calicheamicinone. In all cases they had to make modifications to prevent participation by the 12β hydroxyl group. ${ }^{9}$

The key step in Scheme 2 is the introduction of the nitrogen functionality at C-2. In a more general sense there are relatively few methods for the direct introduction of nitrogen functionality into the α-position of a carbonyl group. We decided that the examination of methodology for the amination of ketone enol derivatives that operate under mild conditions would be a

[^1]
Scheme 1

1, Calicheamicin γ_{1}

2, Calicheamicinone

3, core bicyclo[7.3.1]enediyne

Scheme 2

worthwhile endeavor in itself, regardless of its eventual applicability to the synthesis of calicheamicinone. ${ }^{10}$

Synthesis of Bicyclo[7.3.1]enediyne Core (Scheme 3)

Coupling of propargyl alcohol-THP ether to cis-1,2-dichloroethylene under the usual conditions $\left[\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right){ }_{4} / \mathrm{CuI} / \mathrm{BuNH}_{2} /\right.$ $\mathrm{PhH}]$ followed coupling to trimethylsilylacetylene under the same conditions, and desilylation gave the enediyne $9 .{ }^{11,12}$ Treatment of 9 with lithium bis(trimethylsilyl)amide and addi-

[^2]tion to the enone $\mathbf{6}$ followed by quenching the mixture with allyl chloroformate gave 11. In this sequence of transformations the initially formed adduct $\mathbf{1 0}$ must undergo silyl migration to give 10a, which is trapped by the chloroformate. Palladium diacetate catalyzed oxidation of $\mathbf{1 1}$ gave the enone 12. ${ }^{13}$ This very convenient procedure could be operated on a large scale ($>40 \mathrm{~g}$) in good yields. Removal of the THP group in $\mathbf{1 2}$ was achieved using Amberlyst $\mathrm{H}-15$ acid resin in methanol to give the alcohol $\mathbf{1 3}(97 \%)$. Complexation of $\mathbf{1 3}$ with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ was not entirely regiospecific and resulted in a mixture of the required adduct $\mathbf{1 5}$ and $\mathbf{1 4}$ (6:1). The adducts were separated, and $\mathbf{1 4}$ was recycled to $\mathbf{1 3}$ by oxidative removal of the cobalt complex with ceric(IV) ion. Oxidation of $\mathbf{1 5}$ using the Saigo procedure gave the aldehyde cobalt complex 16. ${ }^{14}$ This sequence of reactions can be carried out on >100 gram scale. Treatment of $\mathbf{1 6}$ with $\mathrm{PhSAlMe}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ followed by Ti$\left(\mathrm{OPr}^{i}\right)_{4}$ and warming to $-10{ }^{\circ} \mathrm{C}$ gave the cyclized adduct $\mathbf{1 7 .}{ }^{15}$ We have spent a great deal of time trying to optimize this reaction and make it reproducible on a convenient scale (ca. $5-10 \mathrm{~g}$). The reagent PhSAlMe 2 rapidly adds to $\mathbf{1 6}$ to give two diastereomeric β-sulfides (via 16a). Only one of these adducts proceeds to form the product 17, presumably via the chelate $\mathbf{1 6 b}$. The reaction is worked-up by quenching with cold $\left(-78^{\circ} \mathrm{C}\right)$ silica gel to prevent retro-aldol reaction to 18 . It was found that it was best to oxidize the sulfide 17 with MCPBA to give directly $\mathbf{1 9}$, which is far more stable since it cannot undergo a retro-aldol reaction. Cobalt decomplexation of 19 provides the crystalline enone 20 (12 steps from propargyl alcohol). Protection of the 12β-ol 20 as the derived TBS ether 21 was necessary for the next step to be successful.

Introduction of C-3 Oxygen and C-2 Nitrogen Functionality (Scheme 4)

While there are a number of allylic oxidation procedures that, in principle, are capable of converting 21 directly into 22, only the Nicoloau reagent proved successful. ${ }^{16}$ Surprisingly, ${ }^{17}$ when 21 was treated with N-(phenylselenenyl)phthalimide the bisselenide 22 was formed. This turned out to be ideal, since 22 was readily oxidized to the desired enedione 23. It is essential that the N-(phenylselenenyl)phthalimide be freshly recrystallized for this reaction to be successful. ${ }^{18}$

Conjugate addition of azide anion to the enedione $\mathbf{2 3}$ at C-2 should be a possible method for the introduction of an amine

[^3]Scheme 3^{a}

6

16

$i \square 20(\mathrm{R}=\mathrm{H})$

14

16a

19

17
${ }^{a}$ Conditions: (a) $\mathrm{LiN}(\mathrm{TMS})_{2} / \mathrm{THF} /-78$ to $-30^{\circ} \mathrm{C} /$ recool to $-78{ }^{\circ} \mathrm{C}$ add $\mathbf{6}$, warm to $25^{\circ} \mathrm{C}$, recool to $-78{ }^{\circ} \mathrm{C}$, add allylchloroformate, $\mathbf{1 1}(90 \%)$. (b) $\mathrm{Pd}(\mathrm{OAc})_{2}$ (cat)/MeCN reflux, 12 (76%). (c) Amberlyst $\mathrm{H}-15, \mathrm{MeOH}, \mathbf{1 3}$ (97%). (d) $\mathrm{Co}_{2}(\mathrm{CO})_{8} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 0^{\circ} \mathrm{C} \mathbf{1 5}$ (85%), $\mathbf{1 4}$ (14%). (e) t - $\mathrm{BuOMgBr} /$ THF/1, 1^{\prime}-azodicarbonyldipiperidine/THF/ $0^{\circ} \mathrm{C}, \mathbf{1 6}(81 \%)$. (f) $\mathrm{PhSAlMe}_{2} / \mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$, followed by $\mathrm{Ti}\left(\mathrm{OPr}^{i}\right)_{4}-78$ to $10{ }^{\circ} \mathrm{C}$, recool to $-78{ }^{\circ} \mathrm{C}$, workup with SiO_{2} quench, 17 (45-71\%). (g) $\mathrm{MCPBA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{1 9}$ (64\%). (h) $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{2}\right)_{6} /$ acetone/- $10{ }^{\circ} \mathrm{C}$, 20 (76\%). (i) TBSOTf/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{NEtPr}_{2}{ }^{i} / 0{ }^{\circ} \mathrm{C}$, 21 (93%).
group at this position. ${ }^{19}$ It was found that treatment of $\mathbf{2 3}$ with NaN_{3} in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH} /$ DMF gave the amine 24, albeit in low yield ($<10 \%$), which became even lower on a larger scale (>10 mg). ${ }^{20}$

Diphenylsulfilimine $\left(\mathrm{Ph}_{2} \mathrm{~S}=\mathrm{NH}\right)$ is known to add to enediones to produce aziridines in a protic solvent (MeOH) and enamines in benzene. ${ }^{21}$ Exposure of 23 to $\mathrm{Ph}_{2} \mathrm{~S}=\mathrm{NH} \cdot \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CF}_{3} \mathrm{CH}_{2}-$

OH only gave the 1,2 -aziridine $\mathbf{2 5}$ (isolated as the $-\mathrm{NCO}_{2} \mathrm{Me}$ derivative). Eventually, it was discovered that the 12β-alcohol 26 reacted with $\mathrm{Ph}_{2} \mathrm{~S}=\mathrm{NH}$ in tetrahydrofuran to give the 2-amino adduct 27 ($65-85 \%$). ${ }^{22}$ Presumably, the success of this procedure is due to intramolecular protonation of the $\mathrm{C} 1-$

[^4]Scheme 4^{a}

${ }^{a}$ Conditions: (a) N-(phenylselenenyl)phthalimide/DBU/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 25^{\circ} \mathrm{C}, 22$ (79%). (b) $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 0-25^{\circ} \mathrm{C}, \mathbf{2 3}$ (89%). (c) $\mathrm{NaN} \mathrm{N}_{3} / \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH} /$ DMF, $24(<10 \%)$. (d) $\mathrm{Ph}_{2} \mathrm{~S}=\mathrm{NH} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$, followed by triphosgene/ $\mathrm{NEtPr}_{2}{ }^{i} / \mathrm{MeOH}, 25$ (95%). (e) $\mathrm{CF}_{3} \mathrm{SO} \mathrm{O}_{3} \mathrm{H} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}, 26$ (87%). (f) $\mathrm{Ph}_{2} \mathrm{~S}=\mathrm{NH} / \mathrm{THF} / 25^{\circ} \mathrm{C}, 27$ (65\%). (g) Camphor sulfonic acid/dioxane/ethylene glycol, 28 (65\%). (h) 27/TESOTf/ $\mathrm{NEt}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 29(90 \%)$ (i) (Boc) $2 \mathrm{O} /$ DMAP/NEt $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30$ (95\%). (j) $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}, \mathbf{3 1}$ (95\%).

C13 enolate by the 12β-hydroxyl, competing with the $1,3-$ elimination of $\mathrm{Ph}_{2} \mathrm{~S}$.

Attempted ketalization of 27 was unsuccessful due to an unexpected reaction resulting in 28, presumably via the iminium ion 27a. The structure of 28 was established by X-ray crystallography, Figure 1. Since we could not use the C-3 ethylene ketal protecting group (that could have successfully completed the synthesis), ${ }^{2-4}$ we explored various enol derivatives that could be made under neutral to basic conditions. It was found that treatment of 27 with TESOTf/Et ${ }_{3} \mathrm{~N}$ gave 29, and both the 2 -amino group and the C-3 carbonyl could be protected as the tris-Boc derivative 30. Selective deprotection of $\mathbf{3 0}\left(\mathrm{TfOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right)$ gave the 12β-alcohol 31 .

(21) Furukawa, N.; Yoshimura, T.; Ohtsu, M.; Akasaka, T.; Oae, S. Tetrahedron 1980, 36, 73. Yoshimura, T.; Omata, T.; Furukawa, N.; Oae, S. J. Org. Chem. 1976, 41, 1728.
(22) During the course of this work it was reported that $\mathrm{Ph}_{2} \mathrm{~S}=\mathrm{NH}$ reacts with similar enones to give an aziridine. Clark, D. A.; De Riccardis, F.; Nicolaou, K. C. Tetrahedron 1994, 50, 11391. Ulibarri, G.; Nadler, W.; Skrydstrup, T.; Audrain, H.; Chiaroni, A.; Riche, C.; Grierson, D. S. J. Org. Chem. 1995, 60, 2753.

Figure 1. Chem 3D of 28 from X-ray coordinates (-TBS).

Introduction of the Trisulfide and Final Complications

 (Scheme 5)The introduction of the C14 and C15 carbon atoms of the allylic trisulfide can be achieved by Wadsworth-Emmons phosphonate chemistry. ${ }^{23}$ Since Danishefsky has conducted this transformation intramolecularly, ${ }^{2}$ we converted 31 into the derived the β-phosphono-ester, but using the Rathke conditions ${ }^{24}$ (or NaH and LiHMDS), we did not observe any lactone 32. ${ }^{25}$ Only slow conversion into $\mathbf{3 1}$ took place. Fortunately, the classical intermolecular Wadsworth-Emmons conditions cleanly converted 31 into 32 (88%). We could not detect the other stereoisomer (${ }^{1} \mathrm{H}$ NMR).

Both Nicolaou and Danishefsky have reduced lactones similar to 32 (3-ethylene ketal and 2-NPhth) in their respective syntheses of $\mathbf{2}$, using DIBAL-H (lactol) followed by NaBH_{4} to give the

[^5]Scheme 5^{a}

31
$32 \mathrm{c}-33$ ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$)

41

$39(\mathrm{n}=3)$
$40(\mathrm{n}=2)$

$$
43\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}\right)
$$

${ }^{a}$ Conditions: (a) (MeO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me} / \mathrm{LiN}(\mathrm{TMS})_{2} / \mathrm{THF} / 0^{\circ} \mathrm{C}, \mathbf{3 2}$ (88%). (b) $\mathrm{NaBH}_{4} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 33$ (81%). (c) $2,4-\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SCl}^{2} / \mathrm{py}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 34 (73%). (d) $\mathrm{MeOCOCl} / \mathrm{py}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{3 5}$ (74%). (e) $\mathrm{PhSH} / \mathrm{py} / \mathrm{THF}, \mathbf{3 6}$ (87%). (f) $\mathrm{Ms}_{2} \mathrm{O} / \mathrm{NEt}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{3 7}$ (83%). (g) KSAc/acetone, $\mathbf{3 8}$ (81%). (h) DIBAL-H/THF/ $-78{ }^{\circ} \mathrm{C}$, workup with Rochelle's salt, followed by PhthSSMe, 39 (90%). (i) TESOTf/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{NEt}_{3}, 41$ (39%) and 42 (49%). (j) 39/ $\mathrm{MeSO}_{3} \mathrm{H} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 42$ (86\%). (k) TESOTf$/ 2,6-$ lutidine $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 43$ (76\%). (l) $\mathrm{NaBH}_{4} / \mathrm{MeOH}, 44$ (42%).
respective diol. We found this two-step procedure to be unreliable and low yielding.

The lactone 32 was readily reduced to the diol $\mathbf{3 3}$ (81\%) by treatment with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$. Selective protection of the primary alcohol was achieved by sulfenylation with 2,4$\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SCl}$ to give $34,{ }^{26}$ and the propargylic hydroxyl group
(25) The ketophosphonate (vii) did not undergo intramolecular cyclization to give (viii) under a variety of conditions [$\mathrm{NaH}, \mathrm{LiN}(\mathrm{TMS})_{2}, \mathrm{DBU} / \mathrm{LiCl}$, $\left.\mathrm{Et}_{3} \mathrm{~N} / \mathrm{LiBr}\right]$ and was slowly converted into the alcohol (ix). In contrast, treatment of (ix) with the standard Wadsworth-Emmons reagent under intermolecular reaction conditions proceeded cleanly to give the lactone (viii) in $>80 \%$ yield.

Ketalization of 26 gave (\mathbf{x}) which underwent intermolecular WadsworthEmmons reaction to give (xi) (83\%). Hydrolysis of (xi) gave (xii), which would not undergo $\mathrm{C}-2$ amination with $\mathrm{Ph}_{2} \mathrm{~S}=\mathrm{NH}$ under the conditions that worked well for the enedione 26. More vigorous reaction conditions gave extensive decomposition.

Figure 2. Chem 3D of $\mathbf{3 8}$ from X-ray coordinates (-TBS, -3 Boc's).
was converted into the carbonate derivative 35. Treatment of 35 with thiophenol gave 36. The derived mesylate 37 was converted into the thiol acetate 38, and its structure and relative stereochemistry were confirmed by single crystal X-ray analysis, Figure 2.

Reductive cleavage of the thiolacetate $\mathbf{3 8}$ with DIBAL-H and in situ treatment of the thiolate anion with the Harpp reagent PhthSSMe ${ }^{27}$ gave a mixture of the trisulfide 39 and disulfide 40. ${ }^{28}$ Whereas, workup of the above reaction with $\mathrm{MeOH} /$

[^6]
Scheme 6

41

45

45a
i) NaBH_{4}

1
ii) Dowex 50W-X8 ($\left.\mathrm{H}^{+}\right)$

46

$42\left(\mathrm{R}=\mathrm{Boc}, \mathrm{R}^{\prime}=\mathrm{H}\right)$
43 ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$)

Rochelle's salt and addition of Harpp's reagent (now to the thiol) only gave the trisulfide $39 .{ }^{29}$ If the thiolacetate $\mathbf{3 8}$ is reductively cleaved with NaBH_{4}, the cyclic sulfide 44 was formed. We have observed this type of cyclic sulfide in earlier model work. ${ }^{8}$

Treatment of 39 with camphor sulfonic acid/THF/ $\mathrm{H}_{2} 0$ at 25 ${ }^{\circ} \mathrm{C}$ (conditions used by Danishefsky, Nicoloau, and Clive) gave no reaction, and warming the mixture resulted in extensive decomposition. Exposure of $\mathbf{3 9}$ to TESOTf/Et ${ }_{3} \mathrm{~N}$ cleanly gave $41(39 \%)$ and $42(49 \%)$. Excess TESOTf/2,6-lutidine resulted in the completely deprotected cyclic sulfide 43 (76\%). More vigorous deprotection conditions $\left(\mathrm{MeSO}_{3} \mathrm{H}\right)$ gave 42 (86%),

[^7]

Scheme 5. Apparently, the enol-Boc group is removed first to give 41, which upon removal of one of the N-Boc groups results in 45, which allows the iminium ion 45a to form (see 27a, Scheme 4), and sulfide participation to give 42 and 43 , Scheme 6. It is instructive to recall that the Lederle group had observed that $\mathbf{1}$ on treatment with NaBH_{4}, followed acid catalyzed methanolysis, isolated the cyclic sulfide $46 .{ }^{30}$ These results vividly illustrate that calicheamicinone precursors are delicately poised to be either converted into 2 or proceed down the pathway of iminium ion chemistry in the same manner as observed in the original structure/degradation studies.

Summary

The conversion of a simple bicyclo[7.3.1]enediyne core structure such as $\mathbf{2 0}$ into a fully functionalized system $\mathbf{3 9}$ has been accomplished and demonstrates that a variety of unusual reactions can be conducted on the core in an efficient manner. One of the most difficult problems in the above approach has been the conjugate addition-aldol reaction to convert 16 into 20. This reaction does not scale-up well and drastically reduces the amount of material needed for the more detailed investigation of protecting group options, and exploring, for example, the potential uses of the aziridine $\mathbf{2 5}$ as an isomeric analogue of calicheamicinone. Consequently, as a realization of the limitations imposed by the above we have devised a much more efficient synthesis of theenedione $23 .{ }^{31}$

Experimental Section ${ }^{32}$

6-[(Z)-7-[(Tetrahydropyranyl)oxy]hept-1,5-diyn-3-ene]-6-[(tert-butyldimethylsilyl)oxy]-1-[carboallyloxy]cyclohex-1-ene (11). A solution of $9(17.5 \mathrm{~g}, 92 \mathrm{mmol})$ in anhydrous tetrahydrofuran (275 mL) was cooled to $-78^{\circ} \mathrm{C}$ under argon. Lithium bis(trimethylsilyl)amide (1 M in tetrahydrofuran, $110 \mathrm{~mL}, 110 \mathrm{~mol}, 1.2$ equiv) was added over 5 min , and the mixture stirred for 5 min at $-78^{\circ} \mathrm{C}$ and for 15 min at $-30^{\circ} \mathrm{C}$. The solution was cooled to $-78^{\circ} \mathrm{C}$, and a solution of $6(24.9$ $\mathrm{g}, 110 \mathrm{mmol}, 1.2$ equiv) in anhydrous tetrahydrofuran (25 mL) was added via cannula over 10 min . The mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$, allowed to warm to room temperature, and stirred at ambient temperature for 3 h . The mixture was recooled to $-78^{\circ} \mathrm{C}$, and allyl chloroformate ($15.6 \mathrm{~mL}, 147 \mathrm{mmol}, 1.6$ equiv) was added over 5 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min , allowed to warm to room temperature and stirred for a further 2 h . The mixture was quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$, the layers

[^8]were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (300 $\mathrm{mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification of the crude product by chromatography over silica gel eluting with $95: 5$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ gave 11 as a pale yellow oil (41.45 g, 90%). IR (thin film) 2930, 2855, 1768, $1652 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82-5.96(2 \mathrm{H}, \mathrm{m}), 5.80(1 \mathrm{H}, \mathrm{s}), 5.53(1 \mathrm{H}, \mathrm{t}, J=4$ $\mathrm{Hz}), 5.34(1 \mathrm{H}, \mathrm{dd}, J=17,1 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{dd}, J=11,1 \mathrm{~Hz}), 4.79$ $(1 \mathrm{H}, \mathrm{br}$ s), $4.57-4.65(2 \mathrm{H}, \mathrm{m}), 4.30-4.47(2 \mathrm{H}, \mathrm{m}), 3.77-3.85(1 \mathrm{H}$, m), $3.47-3.53(1 \mathrm{H}, \mathrm{m}), 2.01-2.22(4 \mathrm{H}, \mathrm{m}), 1.45-1.84(8 \mathrm{H}, \mathrm{m}), 0.82$ $(9 \mathrm{H}, \mathrm{s}), 0.18(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5,147.4$, $131.5,119.5,119.2,118.9,117.4,98.2,96.9,92.9,83.0,82.4,68.6$, $68.2,61.9,54.8,40.6,30.2,25.6,25.3,24.0,19.0,18.9,18.0,-3.0$, -3.5. HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{M}^{+}+1\right)$ 501.2672. Found 501.2663 .

6-[(Z)-7-[(Tetrahydropyranyl)oxy]hept-1,5-diyn-3-ene]-6-[tert-butyldimethylsilyl)oxy]cyclohex-2-en-1-one 12. To a solution of 11 $(41.7 \mathrm{~g}, 83.3 \mathrm{mmol})$ in anhydrous acetonitrile $(420 \mathrm{~mL})$ heated at reflux under argon was added palladium(II) acetate ($375 \mathrm{mg}, 1.67 \mathrm{mmol}, 2$ $\mathrm{mol} \%$), and the mixture heated at $80^{\circ} \mathrm{C}$ for 4 h until TLC (hexanes/ $\mathrm{Et}_{2} \mathrm{O}, 80: 20$) showed complete reaction. Celite $545(15 \mathrm{~g})$ was added, and the mixture was allowed to cool with vigorous stirring over 30 min . The solution was filtered through a pad of Celite, and the solvent evaporated in vacuo to give the crude product, which was immediately purified by chromatography over silica gel eluting with 80:20 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ to give $\mathbf{1 2}$ as a colorless oil ($26.2 \mathrm{~g}, 76 \%$). IR (thin film) 2928, 2854, 1706, $1620 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84-6.89$ $(1 \mathrm{H}, \mathrm{m}), 5.95(1 \mathrm{H}, \mathrm{bd}), 5.77-5.88(2 \mathrm{H}, \mathrm{m}), 4.78(1 \mathrm{H}, \mathrm{bt}), 4.32-4.46$ $(2 \mathrm{H}, \mathrm{m}), 3.78-3.84(1 \mathrm{H}, \mathrm{m}), 3.46-3.55(1 \mathrm{H}, \mathrm{m}), 2.50-2.66(1 \mathrm{H}, \mathrm{m})$, $2.35-2.47(1 \mathrm{H}, \mathrm{m}), 2.17-2.41(2 \mathrm{H}, \mathrm{m}), 1.50-1.83(6 \mathrm{H}, \mathrm{m}), 0.86(9 \mathrm{H}$, $\mathrm{s}), 0.20(3 \mathrm{H}, \mathrm{s}), 0.18(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\delta\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.6$, $149.8,126.9,120.2,118.9,96.9,94.4,93.2,84.4,82.9,73.2,62.0,54.7$, $38.8,30.2,25.8,25.3,25.1,19.0,18.3,-3.2,-3.1$. HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}+1\right) 415.2315$. Found 415.2305 .

6-((Z)-7-Hydroxyhepta-1,5-diyn-3-ene)-6-[(tert-butyldimethylsi-lyl)oxy]cyclohex-2-en-1-one 13. Amberlyst $\mathrm{H}-15$ (5.2 g) was added to a stirred solution of $\mathbf{1 2}(11.4 \mathrm{~g}, 27.5 \mathrm{~mol})$ in methanol $(125 \mathrm{~mL})$ at room temperature. After 3 h the reaction was complete by TLC (hexanes/EtOAc, 80:20). The mixture was filtered through a pad of silica gel ($5 \mathrm{~cm} \times 10 \mathrm{~cm}$ dia) and washed thoroughly with methanol $(250 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$. The filtrate was concentrated in vacuo, and the residues were purified by chromatography over silica gel eluting with hexanes $/ \mathrm{Et}_{2} \mathrm{O} 80: 20$) to give $\mathbf{1 3}$ as a colorless oil $(8.83 \mathrm{~g}, 97 \%)$. IR (thin film) 3428, 2928, 2885, 2855, 2708, 2206, 1697, $1620 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(1 \mathrm{H}, \mathrm{ddd}, J=10,4.1,4.0 \mathrm{~Hz}$), $5.96(1 \mathrm{H}, \mathrm{ddd}, J=10,1.7,1.6 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{dt}, J=10.8,1.7 \mathrm{~Hz})$, 5.78 ($1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}$), $4.39(2 \mathrm{H}, \mathrm{s}), 2.41-2.65(3 \mathrm{H}, \mathrm{m}), 2.18-$ $2.27(2 \mathrm{H}, \mathrm{m}), 0.84(9 \mathrm{H}, \mathrm{s}), 0.19(3 \mathrm{H}, \mathrm{s}), 0.17(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.9,150.5,126.8,120.9,118.9,95.8,94.2,84.8$, 82.6, 73.0, 51.4, 38.4, 25.7, 24.7, 18.3, $-3.2,-3.3$. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}+1\right)$ 331.1730. Found 331.1728.

6-((Z)-7-Hydroxyhepta-1,5-diyn-5,6- $\boldsymbol{\eta}^{2}$-hexacarbonyldicobaltio-3-ene)-6-[(tert-butyldimethylsilyl)oxy]cyclohex-2-en-1-one 15. Dicobalt octacarbonyl ($16.45 \mathrm{~g}, 48.1 \mathrm{mmol}$, 1 equiv) was added in portions
(32) Melting points were taken on a Thomas-Hoover capillary tube apparatus and are uncorrected. Boiling points are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 881 grating spectrophotometer or a Perkin-Elmer 1600 FT-IR spectrometer either neat or in CHCl_{3} as indicated. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a General Electric QE-300 $(300 \mathrm{MHz})$ spectrometer as solutions in deuterochloroform $\left(\mathrm{CDCl}_{3}\right)$ unless otherwise indicated and are reported in ppm downfield from TMS. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on General Electric QE-300 (75 MHz) instrument as solutions in CDCl_{3} unless otherwise indicated. Low resolution chemical ionization (CI) mass spectra were obtained on a TSQ 70 instrument, and the exact mass determinations were obtained on a VG analytical ZAB2-E instrument. Routine monitoring of reactions was performed using Merck 60 F254 silica gel, aluminum-backed TLC plates. Preparative layer chromatography (plc) was performed using Merck 60H F254 silica gel, glass supported plates. Flash column chromatography was performed with the indicated solvents on Merck 60H F254 silica gel. Air and moisture sensitive reactions were performed under usual inert atmosphere conditions. Reactions requiring anhydrous conditions were performed in glassware dried by a Bunsen flame or in an oven at $140^{\circ} \mathrm{C}$, then cooled under argon, and performed under a blanket of argon. Solvents and commercial reagents were dried and purified before use: $\mathrm{Et}_{2} \mathrm{O}$ and tetrahydrofuran were distilled from sodium benzophenone ketyl; dichloromethane and benzene were distilled from calcium hydride under argon.
over 5 min to a stirred solution of $13(15.9 \mathrm{~g}, 48.1 \mathrm{mmol})$ in dichloromethane (240 mL) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred until the evolution of gas ceased, and TLC (hexanes/EtOAc, 80:20) showed complete consumption of starting material. The solvent was evaporated in vacuo, and the mixture purified by chromatography over silica gel eluting with $80: 20$ hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ to give $15(25.2 \mathrm{~g}$, $85 \%)$ and $\mathbf{1 4}(5.0 \mathrm{~g}, 14 \%) .{ }^{1} \mathrm{H}$ NMR spectroscopy on these compounds produced very broad-peaked spectra.

Recycling 14. A stirred solution of $\mathbf{1 4}(14 \mathrm{~g}, 22.7 \mathrm{mmol})$ in acetone $(220 \mathrm{~mL})$ and triethylamine $(0.575 \mathrm{~mL})$ was treated with cerium(IV) ammonium nitrate in small portions until the solution became light orange (total added: $40 \mathrm{~g}, 72.9 \mathrm{mmol}, 3.2$ equiv). Celite $545(10 \mathrm{~g})$ was added, and the mixture stirred vigorously for a further 15 min . The solids were filtered, the filtrate was concentrated to a volume of $c a .20 \mathrm{~mL}$ and diluted with EtOAc (200 mL), and the solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(250 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($4 \times 250 \mathrm{~mL}$), and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by chromatography over silica gel eluting with 60:40 hexanes/Et I_{2} g gave 13 ($6.57 \mathrm{~g}, 87 \%$).

6-((Z)-6-Formylhex-1,5-diyn-5,6- $\boldsymbol{\eta}^{2}$-hexacarbonyldicobaltio-3-ene)-6-[(tert-butyldimethylsilyl)oxy]cyclohex-2-en-1-one 16. To a solution of $\mathbf{1 5}(16.8 \mathrm{~g}, 27.25 \mathrm{mmol})$ in anhydrous tetrahydrofuran (136 mL) at $0{ }^{\circ} \mathrm{C}$ under argon was added dropwise over 5 min tertbutoxymagnesium bromide (0.5 M in tetrahydrofuran, $65.4 \mathrm{~mL}, 32.7$ $\mathrm{mmol}, 1.2$ equiv), and the mixture stirred for a further 5 min . $1,1^{\prime}$ (Azodicarbonyl)dipiperidine ($8.25 \mathrm{~g}, 32.7 \mathrm{mmol}, 1.2$ equiv) in anhydrous tetrahydrofuran (50 mL) was added over 5 min , and the mixture stirred at $0^{\circ} \mathrm{C}$ until TLC (hexanes/EtOAc, 80:20) showed complete consumption of the starting material (ca. 30 min). The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(250 \mathrm{~mL})$, and the organic layer separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 250$ mL), and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration in vacuo left a dark red solid which was triturated with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a 5 cm pad of florisil eluting with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated, and the residue purified by chromatography over silica gel eluting with $90: 10$ hexanes/Et 2 O to afford 16 ($13.6 \mathrm{~g}, 81 \%$). IR (thin film) 2955, 2930, 2094, 2059, 2031, 1705, $1675 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 10.49(1 \mathrm{H}, \mathrm{s}), 6.17(1 \mathrm{H}, \mathrm{m}), 6.12(1 \mathrm{H}, \mathrm{d}, J=10.7$ $\mathrm{Hz}), 5.87(1 \mathrm{H}, \mathrm{m}), 5.44(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{m}), 2.02(3 \mathrm{H}$, $\mathrm{m}), 1.01(9 \mathrm{H}, \mathrm{s}), 0.38(3 \mathrm{H}, \mathrm{s}), 0.32(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 192,189,150,136,127,111,101,88,85,83,74,38,26,24,19$, $-2.9,-3.0$. HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{9} \mathrm{SiCo}_{2}\left(\mathrm{M}^{+}+1\right) 614.9956$. Found 614.9961 .

13-Oxo- 2β-thiophenyl-12 β-hydroxy-5-[(tert-butyldimethylsilyl)-oxy]bicyclo[7.3.1]trideca-6,10-diyn-(10,11- $\boldsymbol{\eta}^{2}$-hexacarbonyldicobal-tio)-8-ene 17. Redistilled thiophenol ($1.06 \mathrm{~mL}, 10.4 \mathrm{mmol}$) was added slowly to a solution of trimethyl aluminum (2 M in hexanes, 5.2 mL , $10.4 \mathrm{mmol})$ in anhydrous dichloromethane (21 mL) stirred at $0^{\circ} \mathrm{C}$ under argon. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min , after which time anhydrous tetrahydrofuran ($845 \mu \mathrm{~L}, 10.4 \mathrm{mmol}$) was added. The mixture was cooled to $-78^{\circ} \mathrm{C}$ and stirred for 10 min . The aldehyde $16(3.19 \mathrm{~g}, 5.2 \mathrm{mmol})$ in anhydrous dichloromethane (10 mL ; stirred over $4 \AA$ molecular sieves for 24 h) was added dropwise over 5 min , and the mixture stirred for a further 10 min at $-78{ }^{\circ} \mathrm{C}$. Titanium tetraisopropoxide ($12.36 \mathrm{~mL}, 41.5 \mathrm{mmol}, 8$ equiv) was added dropwise over 15 min . The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min , after which time the cold bath was replaced by an ice-water bath. The mixture was allowed to reach $10^{\circ} \mathrm{C}$ over 2 h and was stirred for a further 45 min at $10^{\circ} \mathrm{C}$, after which time TLC showed almost all the starting material converted to product. The mixture was recooled to $-78^{\circ} \mathrm{C}$, and precooled ($-78^{\circ} \mathrm{C}$) silica gel (40 g) added slowly over 10 min via a solid addition funnel. The argon line was removed, and the mixture stirred for a further 45 min in air. The mixture was filtered through a plug of silica, and the plug washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo, and the residue purified by chromatography over silica gel eluting with $95: 5-80: 20$ hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ to give a mixture of β-thiophenol adducts 18 ($510 \mathrm{mg}, 16 \%$), starting material 16 (160 $\mathrm{mg}, 5 \%)$, and the cyclized material $17(2.66 \mathrm{~g}, 71 \%)$. IR (CHCl_{3}) 3500 , 2929, 2094, 2059, 2030, $1731 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $7.42(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 6.98(3 \mathrm{H}, \mathrm{m}), 6.34(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 5.22$ $(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}$, br. s), $3.11(1 \mathrm{H}, \mathrm{d}, J=$ $9.2 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{m}), 2.02(2 \mathrm{H}, \mathrm{m}), 1.62(1 \mathrm{H}, \mathrm{m}), 1.25(1 \mathrm{H}, \mathrm{d}, J=$
$7.4 \mathrm{~Hz}), 1.06(9 \mathrm{H}, \mathrm{s}), 0.39(3 \mathrm{H}, \mathrm{s}), 0.34(3 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{9} \mathrm{SSiCo}_{2}$: C, $51.38 ; \mathrm{H}, 4.18$. Found: C, $51.19 ; \mathrm{H}, 4.26 \%$.

13-Oxo-12 β-hydroxy-5-[(tert-butyldimethylsilyl)oxy]bicyclo[7.3.1]-trideca-6,10-diyn-(10,11- $\boldsymbol{\eta}^{2}$-hexacarbonyldicobaltio)-1,8-diene 19. To a solution of $\mathbf{1 7}(849 \mathrm{mg}, 1.2 \mathrm{mmol})$ in dichloromethane $(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon was added m-chloroperoxybenzoic acid (242 mg , 1.4 mmol) in one portion, and the cooling bath removed. Stirring was continued at room temperature for 3 h . The mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and the aqueous layer extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo, and the residue was purified by chromatography over Florisil eluting with 80:20 hexanes/Et 2 O to afford 19 ($466 \mathrm{mg}, 64 \%$). IR $\left(\mathrm{CHCl}_{3}\right) 3500,2929,2094,2059,2030,1731$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.27(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz})$, $5.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.23(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz})$, $4.87(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 1.78(2 \mathrm{H}, \mathrm{m}), 1.55(2 \mathrm{H}, \mathrm{m}), 0.94(9 \mathrm{H}, \mathrm{s})$, $0.15(3 \mathrm{H}, \mathrm{s}), 0.13(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 200.0,143.8$, 133.4, 128.6, 110.5, 97.5, 93.4, 79.5, 70.1, 64, 38.4, 26.3, 23.7, -2.3, -2.6. LRMS (FAB) 613, 586, 530, 502, 473, 445, 305. See 20 for complete characterization.

13-Oxo-12 β-hydroxy-5-[(tert-butyldimethylsilyl)oxy]bicyclo[7.3.1]-trideca-6,10-diyn-1,8-diene 20. To a solution of 19 ($468 \mathrm{mg}, 0.76$ $\mathrm{mmol})$ in acetone $(50 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ was added cerium(IV) ammonium nitrate in small portions until the solution turned a light orange color. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent in vacuo and purification of the residue by chromatography over Florisil eluting with 75:25 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ gave 20 ($190 \mathrm{mg}, 76 \%$). Mp 123-124 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) 3457,3024,2959,2856,1698$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.39(1 \mathrm{H}, \mathrm{m}), 5.87(1 \mathrm{H}, \mathrm{d}, J=$ $9.5 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 2.53$ $(2 \mathrm{H}, \mathrm{m}), 2.26(1 \mathrm{H}, \mathrm{m}), 2.14(1 \mathrm{H}, \mathrm{m}), 0.92(9 \mathrm{H}, \mathrm{s}), 0.22(3 \mathrm{H}, \mathrm{s}), 0.19$ $(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197,140,137,125,123,101$, $96,93,88,75,69,35,26,25,18,-2.8,-3.1$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 69.48 ; \mathrm{H}, 7.37$. Found: C, $69.56 ; \mathrm{H}, 7.40 \%$.

13-Oxo-5,12 β-bis[tert-butyldimethylsilyl)oxy]bicyclo[7.3.1]trideca-6,10-diyn-1,8-diene 21. To a solution of $20(266 \mathrm{mg}, 0.81 \mathrm{mmol})$ and diisopropylethylamine ($700 \mu \mathrm{~L}, 4.02 \mathrm{mmol}, 5$ equiv) in anhydrous dichloromethane (8 mL) at $0{ }^{\circ} \mathrm{C}$ under argon was added tertbutyldimethylsilyl trifluoromethanesulfonate ($372 \mu \mathrm{~L}, 1.62 \mathrm{mmol}, 2$ equiv) by syringe over 5 min . The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and at room temperature for a further 10 min to completion by TLC (hexanes/EtOAc, 80:20). The mixture was quenched with water $(10 \mathrm{~mL})$, and the aqueous phase extracted with dichloromethane $(3 \times$ $10 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo, and the crude product was purified by chromatography over silica gel eluting with $95: 5$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ to give 21 ($333 \mathrm{mg}, 93 \%$). Mp 103$105{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) 2955,2929,2856,1722 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.30(1 \mathrm{H}, \mathrm{m}), 5.84(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 5.80$ $(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{s}), 2.46(2 \mathrm{H}, \mathrm{m}), 2.25(1 \mathrm{H}, \mathrm{m}), 2.11$ $(1 \mathrm{H}, \mathrm{m}), 0.94(9 \mathrm{H}, \mathrm{s}), 0.91(9 \mathrm{H}, \mathrm{s}), 0.22(3 \mathrm{H}, \mathrm{s}), 0.18(3 \mathrm{H}, \mathrm{s}), 0.14$ $(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.5,138.8,137.4,122.7$, 101, 97.1, 90.9, 87.3, 74.9, 69.5, 34.6, 26, 25.9, 24.5, 18.4, -2.8, -3.2, $-4.6,-4.7$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}_{2}$: C, $67.84 ; \mathrm{H}, 8.66$. Found: C, 67.92; H, 8.71.

Bis-Selenide 22. A solution of $21(600 \mathrm{mg}, 1.35 \mathrm{mmol})$ in anhydrous dichloromethane (14 mL) was stirred at room temperature under argon in the dark (flask wrapped in foil). Freshly-prepared N-(phenylselenenyl)phthalimide ($820 \mathrm{mg}, 2.71 \mathrm{mmol}, 2$ equiv) was added in one portion, followed by DBU ($4.05 \mathrm{~mL}, 27.1 \mathrm{mmol}, 20$ equiv). The mixture was stirred for 1.5 h at room temperature, after which time TLC (hexanes/EtOAc, 90:10) showed the complete consumption of starting material and formation of one new less polar product plus diphenyl diselenide. The mixture was concentrated in vacuo (water bath temperature below $30^{\circ} \mathrm{C}$), and the residue triturated with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through Florisil eluting with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo (bath below $30^{\circ} \mathrm{C}$) to give the crude product, which was purified by chromatography over silica gel eluting with 95:5 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ to afford $22(800 \mathrm{mg}, 79 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.57(2 \mathrm{H}, \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{m}), 7.03(3 \mathrm{H}, \mathrm{m}), 5.91(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz})$, $5.37(1 \mathrm{H}, \mathrm{dd}, J=9.5,1.5 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{d}$,
$J=1.5 \mathrm{~Hz}), 2.46(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}), 1.72(1 \mathrm{H}, \mathrm{dd}, J=16.4,2.9$ $\mathrm{Hz}), 1.15(9 \mathrm{H}, \mathrm{s}), 0.97(9 \mathrm{H}, \mathrm{s}), 0.45(3 \mathrm{H}, \mathrm{s}), 0.31(3 \mathrm{H}, \mathrm{s}), 0.27(3 \mathrm{H}, \mathrm{s})$, $0.25(3 \mathrm{H}, \mathrm{s})$. Compound 22 was used immediately in the next step.

3,13-Dioxo-5,12 β-bis[(tert-butyldimethylsilyl)oxy]bicyclo[7.3.1]-trideca-6,10-diyn-1,8-diene 23. Pyridine ($171 \mu \mathrm{~L}, 2.12 \mathrm{mmol}, 2$ equiv) was added to a solution of $\mathbf{2 2}(800 \mathrm{mg}, 1.06 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$, and the mixture cooled to $0^{\circ} \mathrm{C} .30 \%$ Aqueous hydrogen peroxide solution ($280 \mu \mathrm{~L}, 2.12 \mathrm{mmol}, 2$ equiv) was added, and the mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min and then at room temperature for 1 h. The mixture was quenched with water $(10 \mathrm{~mL})$, and the aqueous layer extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo, and the crude product was purified by chromatography over silica gel eluting with $\mathrm{Et}_{2} \mathrm{O} /$ hexanes ($95: 5-90: 10$) to give 23 ($430 \mathrm{mg}, 89 \%$). IR (thin film) 2955, 2930, 2896, 2858, 1737, $1694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.32(1 \mathrm{H}, \mathrm{d}, J=1.75 \mathrm{~Hz}), 5.90(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.90(1 \mathrm{H}, \mathrm{d}, J$ $=9.5 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{s}), 3.23(1 \mathrm{H}, \mathrm{dd}, J=17.4,1.7 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{d}$, $J=17.4 \mathrm{~Hz}), 0.95(9 \mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.23(3 \mathrm{H}, \mathrm{s}), 0.19(3 \mathrm{H}, \mathrm{s})$, $0.16(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 194.5,188.8,151.8,131.9$, $123.8,123.2,99.1,96.1,90.9,89.6,75.9,68,51.2,25.8,25.7,18.3$, $-3.0,-3.3,-4.7$. HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right) 456.2152$. Found 456.2159.

3,13-Dioxo-5,12 β-bis[(tert-butyldimethylsilyl)oxy]-1,2-iminobicyclo [7.3.1]trideca-6,10-diyn-8-ene 25. A solution of $\mathbf{2 3}(150 \mathrm{mg}, 328$ $\mu \mathrm{mol}$) and diphenylsulfilimine monohydrate ($216 \mathrm{mg}, 984 \mu \mathrm{~mol}, 3$ equiv) in 2,2,2-trifluoroethanol (33 mL) was heated to reflux under argon. After 1 h , TLC (hexanes/EtOAc, 80:20) showed the complete consumption of starting material and the formation of one new product plus diphenyl sulfide. The solvent was evaporated in vacuo, and the residue purified by flash column chromatography over silica gel eluting with $\mathrm{Et}_{2} \mathrm{O} /$ hexanes ($20: 80$) to give $\mathbf{2 5}$ ($147 \mathrm{mg}, 95 \%$). Due to slow inversion of the imine and hydration of the $\mathrm{C}-13$ carbonyl group it was difficult to obtain good spectral data. Consequently, $\mathbf{2 5}$ was converted into its $-\mathrm{NCO}_{2} \mathrm{Me}$ derivative by treatment with triphosgene/ $\mathrm{NEtPr}_{2}{ }^{i}$ followed by methanol. IR $\left(\mathrm{CHCl}_{3}\right) 1735,1715 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \mathrm{dd}, J=$ $10.1,1.2 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{d}, J=$ $1.4 \mathrm{~Hz}), 3.02(1 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}), 2.77(1 \mathrm{H}, \mathrm{dd}, J=14.2,1.4 \mathrm{~Hz})$, $0.95(9 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.15(3 \mathrm{H}, \mathrm{s}), 0.14(3 \mathrm{H}, \mathrm{s}), 0.12(3 \mathrm{H}, \mathrm{s}), 0.10$ $(3 \mathrm{H}, \mathrm{s})$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right) 529.2316$. Found 529.2309.

3,13-Dioxo-5-[(tert-butyldimethylsilyl)oxy]-12 β-hydroxybicyclo-[7.3.1]trideca-6,10-diyn-1,8-diene 26. To a solution of 23 (240 mg , $0.53 \mu \mathrm{~mol})$ in tetrahydrofuran $(4.9 \mathrm{~mL})$ and water $(1.8 \mathrm{~mL})$ was added trifluoromethanesulfonic acid ($610 \mu \mathrm{~L}$), and the mixture stirred at 25 ${ }^{\circ} \mathrm{C}$ for 3 h . The mixture was quenched with saturated aqueous NaHCO_{3} $(5 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was evaporated in vacuo, and the residue purified by chromatography over silica gel eluting with $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to give 26 ($157 \mathrm{mg}, 87 \%$). $\mathrm{Mp} 113-115{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$. IR (thin film) 3509, 2957, 2929, 2858, 1712, $1692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.34(1 \mathrm{H}, \mathrm{d}$, $J=1 \mathrm{~Hz}), 5.90(2 \mathrm{H}, \mathrm{s}), 5.35(1 \mathrm{H}, \mathrm{d}, J=11 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=11$ $\mathrm{Hz}), 3.21(1 \mathrm{H}, \mathrm{dd}, J=17.4,1 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}), 0.88$ $(9 \mathrm{H}, \mathrm{s}), 0.19(3 \mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194$, $193,148,132,124,123,99,95,93,89,75,68,50,26,18,-3,-4$. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right) 342.1287$. Found 342.1288.

3,13-Dioxo-2-amino-5-[(tert-butyldimethylsilyl)oxy]-12 β -hydroxybicyclo[7.3.1]trideca-6,10-diyn-1,8-diene 27. Freshly dehydrated diphenylsulfilimine ($350 \mathrm{mg}, 1.75 \mathrm{mmol}, 2.0$ equiv) was added to a solution of $\mathbf{2 6}$ ($300 \mathrm{mg}, 0.87 \mathrm{mmol}, 1.0$ equiv) in tetrahydrofuran $(20 \mathrm{~mL})$ at room temperature. The mixture was stirred under argon for 12 h , diluted with hexanes (10 mL), filtered through a silica plug, and washed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The crude amine was purified by chromatography over silica gel eluting with $40 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to give $27(204 \mathrm{mg}, 65 \%)$. The amine slowly decomposes and is best stored in the freezer in petroleum ether. Mp $82-84^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR (thin film) $3459,3354,2953,2928,2855,1704,1622 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.79(2 \mathrm{H}, \mathrm{s}), 5.74(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{d}, J=$ $10.0 \mathrm{~Hz}), 4.93(2 \mathrm{H}, \mathrm{bs}), 3.22(1 \mathrm{H}, \mathrm{ABq}, J=17.4 \mathrm{~Hz}), 2.981 \mathrm{H}, \mathrm{ABq}$, $J=17.4 \mathrm{~Hz}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.19(3 \mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.7, 190.2, 141.7, 124.8, 124.2, 123.3, 115.0, 99.7, $96.8,91.3,85.0,74.6,63.1,48.9,25.6,18.3,16.4,-3.0,-3.3$. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}^{+}+1\right) 358.1475$. Found 358.1459.

3,13-Dioxo-2-amino-5-[(tert-butyldimethylsilyl)oxy]-12 β-[(2-hydroxyethyl)oxy]bicyclo[7.3.1]trideca-6,10-diyn-1,8-diene 28. Camphor sulfonic acid ($24 \mathrm{mg}, 0.104 \mathrm{mmol}, 2.5$ equiv) was added in one portion to a dioxane $(0.5 \mathrm{~mL})$ solution of $27(15 \mathrm{mg}, 0.042 \mathrm{mmol}, 1.0$ equiv) containing ethylene glycol (0.5 mL). The mixture was stirred at room temperature for 90 min , quenched with triethylamine (2 drops), diluted with saturated aqueous NaCl , and extracted with EtOAc (5.0 $\mathrm{mL})$. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo, and the residue purified by plc ($70: 30 \mathrm{CHCl}_{3}$ /acetone) to give 28 (11 mg , 65%). Mp $205^{\circ} \mathrm{C}$ (EtOAc/hexanes). IR (NaCl) 3436, 3349, 2928, $2860,1693,1620 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88(1 \mathrm{H}, \mathrm{d}$, $J=9.5 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}), 5.41(1 \mathrm{H}, \mathrm{s}), 5.01(2 \mathrm{H}, \mathrm{bs})$, $3.87-3.62(4 \mathrm{H}, \mathrm{m}), 3.26(1 \mathrm{H}, \mathrm{ABq}, J=17.6 \mathrm{~Hz}), 2.97(1 \mathrm{H}, \mathrm{ABq}, J$ $=17.6 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.22(3 \mathrm{H}, \mathrm{s}), 0.18(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.3,189.4,143.7,124.1,123.5,114.9,97.4,96.7$, 89.9, 86.9, 75.5, 71.4, 71.3, 69.3, 61.9, 49.1, 25.8, 18.4, $-3.4,-2.1$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}^{+}+1\right)$ 402.1737. Found 402.1727.

3,13-Dioxo-2-amino-5-[(tert-butyldimethylsilyl)oxy]-12 β -[(triethylsilyl)oxy]bicyclo[7.3.1]trideca-6,10-diyn-1,8-diene 29. A solution of $27(105 \mathrm{mg}, 0.294 \mathrm{mmol})$ in dichloromethane (2 mL) under argon at $0{ }^{\circ} \mathrm{C}$ was treated with triethylamine ($70 \mu \mathrm{~L}$), followed by triethylsilyl trifluoromethanesulfonate ($100 \mu \mathrm{~L}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and warmed to room temperature for a further 10 min . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. After drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation in vacuo, the product was purified by plc, eluting with $30 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to give 29 ($125 \mathrm{mg}, 90 \%$). IR (film) 3371, 2954, 2880, 1695, 1614 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.84(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.80$ $(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.63(1 \mathrm{H}, \mathrm{s}), 4.67(2 \mathrm{H}, \mathrm{s}), 3.22(1 \mathrm{H}, \mathrm{d}, J=17.2$ $\mathrm{Hz}), 2.92(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 1.01-0.91(9 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 0.89$ $(9 \mathrm{H}, \mathrm{s}), 0.68(6 \mathrm{H}, \mathrm{q}, J=7.9 \mathrm{~Hz}), 0.23(3 \mathrm{H}, \mathrm{s}), 0.18(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.1,187.8,141.1,123.7,123.5,123.4$, 118.4, 99.5, 97.7, 89.4, 85.6, 75.8, 62.5, 49.2, 26.1, 18.4, 6.9, 4.7. HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right) 471.2261$. Found 471.2264.

13-Oxo-2-[bis(tert-butoxycarbonyl)amino]-3-[(tert-butoxycarbo-nyl)oxy]-5-[(tert-butyldimethylsilyl)oxy]-12 β-[(triethylsilyl)oxy]bicyclo-[7.3.1]trideca-6,10-diyn-1,3,8-triene 30. A solution of 29 (292 mg , $0.62 \mathrm{mmol})$ in dichloromethane $(1.78 \mathrm{~mL})$ under argon was treated with triethylamine ($180 \mu \mathrm{~L}$), followed by $\mathrm{Boc}_{2} \mathrm{O}(534 \mathrm{mg})$ and 4-(dimethylamino)pyridine (160 mg). After 5 min the mixture was loaded onto a column of silica gel and eluted with $15 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to give $\mathbf{3 0}$ ($453 \mathrm{mg}, 95 \%$) as a pale yellow foam. IR (film) 2955, $2879,1798,1768,1729 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.06$ $(1 \mathrm{H}, \mathrm{s}), 6.00(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 5.95(1 \mathrm{H}, \mathrm{dd}, J=7.1,1.3 \mathrm{~Hz}), 5.78$ $(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}, \mathrm{s}), 1.35(9 \mathrm{H}, \mathrm{s}), 0.96(9 \mathrm{H}$, $\mathrm{t}, J=8 \mathrm{~Hz}), 0.92(9 \mathrm{H}, \mathrm{s}), 0.69(6 \mathrm{H}, \mathrm{m}), 0.20(3 \mathrm{H}, \mathrm{s}), 0.15(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.0,149.9,149.0,148.8,141.0,135.0$, 134.1, 125.1, 124.3, 122.5, 100.4, 95.0, 91.1, 87.8, 84.1, 84.0, 75.5, 62.1, 27.6, 27.5, 25.9, 18.4, 6.8, 5.0, $-3.1,-3.2$. HRMS calcd for $\mathrm{C}_{40} \mathrm{H}_{62} \mathrm{NO}_{10} \mathrm{Si}_{2}\left(\mathrm{M}^{+}+1\right) 772.3912$. Found 772.3914.

13-Oxo-2-[bis(tert-butoxycarbonyl)amino]-3-[(tert-butoxycarbo-nyl)oxy]-5-[(tert-butyldimethylsilyl)oxy]-12 β-hydroxybicyclo[7.3.1]-trideca-6,10-diyn-1,3,8-triene 31. To a solution of $\mathbf{3 0}(906 \mathrm{mg})$ in tetrahydrofuran $(10.6 \mathrm{~mL})$ under argon at room temperature was added aqueous trifluoromethanesulfonic acid [$(1.37 \mathrm{~mL})$ was added to water $(3.87 \mathrm{~mL})]$ with stirring. This solution was added dropwise by cannula to the substrate. The mixture was stirred for 10 min , diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$, and washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. After drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of solvents in vacuo, the product was purified by chromatography over silica gel eluting with $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to yield $\mathbf{3 1}(730 \mathrm{mg}, 95 \%)$. IR (film) 3499, 2932, 2858, 1798, 1768, 1730, 1694, $1601 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.07$ $(1 \mathrm{H}, \mathrm{s}), 6.02(2 \mathrm{H}, \mathrm{s}), 5.47(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{d}, J=11.2$ $\mathrm{Hz}), 1.47(9 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.34(9 \mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.20(3 \mathrm{H}, \mathrm{s})$, $0.17(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 197,150.6,148.4,148.3$, $142.3,136.0,132.8,127.8,126.0,123.6,101.2,94.4,92.7,87.8,84.2$, 84.0, 83.4, 63.6, 27.5, 25.8, 18.6, $-2.7,-3.0$. HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{48^{-}}$ $\mathrm{NO}_{10} \mathrm{Si}\left(\mathrm{M}^{+}+1\right) 658.3047$. Found 658.3057.

Lactone 32. To a solution of trimethylphosphonoacetate ($450 \mu \mathrm{~L}$) in tetrahydrofuran (5.1 mL) under argon at $0^{\circ} \mathrm{C}$ was added dropwise 1 M lithium bis(trimethylsilyl)amide (2.74 mL), and the mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min . A solution of $31(730 \mathrm{mg}, 1.11 \mathrm{mmol})$ in tetrahydrofuran (17.6 mL) was added dropwise by cannula to the above
solution at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and quenched with water $(20 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The residue was purified by chromatography over silica gel to give 32 ($665 \mathrm{mg}, 88 \%$). IR (film) 2980, 2931, 1798, 1768, 1732, $1605 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.15(1 \mathrm{H}, \mathrm{d}$, $J=9 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{s}), 6.02(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 6.01(1 \mathrm{H}, \mathrm{s}), 5.90$ $(1 \mathrm{H}, \mathrm{s}), 1.47(9 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.31(9 \mathrm{H}, \mathrm{s}), 0.94(9 \mathrm{H}, \mathrm{s}), 0.28(3 \mathrm{H}$, s), $0.26(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4,154.1,150.1$, $148.5,142.8,129.4,124.8,122.1,120.1,119.7,114.3,113.9,97.5$, 95.9, 94.9, 93.7, 90.1, 84.5, 84.0, 70.0, 67.5, 27.4, 25.8, 18.1, -3.0. HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{NO}_{10} \mathrm{Si}\left(\mathrm{M}^{+}+1\right)$ 682.3047. Found 682.3037.

Allylic Alcohol 33. A solution of $32(439 \mathrm{mg}, 0.644 \mathrm{mmol})$ in $\mathrm{MeOH}(7.83 \mathrm{~mL})$ and water (17 drops) at $0^{\circ} \mathrm{C}$ under argon was treated with $\mathrm{NaBH}_{4}(400 \mathrm{mg})$, the mixture stirred for 30 min , and further $\mathrm{NaBH}_{4}(240 \mathrm{mg})$ added. The mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 1.25 h , diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo, and the residue taken up in $\mathrm{MeOH}(10 \mathrm{~mL})$ and left for 15 min at room temperature. The solution was evaporated in vacuo, and the residue again taken up in $\mathrm{MeOH}(10 \mathrm{~mL})$ and left for 10 min . After evaporation of the solution in vacuo the residue was purified by plc eluting with $60 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to give $\mathbf{3 3}$ ($356 \mathrm{mg}, 81 \%$). IR (film) 3414, 2932, 1786, $1764 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.46$ $(1 \mathrm{H}, \mathrm{dd}, J=5.2,5.3 \mathrm{~Hz}), 6.05(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.94(1 \mathrm{H}, \mathrm{dd}, J=$ $9.5,1.4 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{s}), 5.73(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{dd}, J=$ $5.3,13.2 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{dd}, J=5.2,13.2 \mathrm{~Hz}), 1.49(9 \mathrm{H}, \mathrm{s}), 1.44(9 \mathrm{H}$, s), $1.35(9 \mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.27(3 \mathrm{H}, \mathrm{s}), 0.21(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.5,150.2,149.4,143.2,138.4,136.9,134.4,128.0$, $126.4,125.2,124.8,124.5,122.6,120.5,100.2,99.5,88.9,87.2,83.9$, 83.5, 83.0, 71.4, 62.9, 60.3, 27.9, 27.6, 25.8, 18.4, -2.9. HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{NO}_{10} \mathrm{Si}\left(\mathrm{M}^{+}\right)$685.3282. Found 685.3272.

2,4-Dinitrosulfenate Ester 34. To a solution of $\mathbf{3 3}$ ($381 \mathrm{mg}, 0.556$ mmol) and 2,4-dinitrophenylsulfenyl chloride (157 mg) in dichloromethane (10.16 mL) under argon at $0{ }^{\circ} \mathrm{C}$ was added pyridine (15 drops), and the mixture stirred for 5 min , after which it was diluted with dichloromethane (10 mL). After washing with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{CuSO}_{4}(10 \mathrm{~mL})$, the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. Purification of the residue by plc eluting with $45 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes gave $\mathbf{3 4}$ ($359 \mathrm{mg}, 73 \%$). IR (film) 3448, 2933, 1787, 1760, 1593, $1521 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 8.51(1 \mathrm{H}, \mathrm{dd}, J=2.3,9.1$ $\mathrm{Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{dd}, J=5.5,8 \mathrm{~Hz}), 6.07(1 \mathrm{H}$, d, $J=9.5 \mathrm{~Hz}), 5.96(1 \mathrm{H}, \mathrm{dd}, J=9.5,1.6 \mathrm{~Hz}), 5.73(1 \mathrm{H}, \mathrm{s}), 5.70(1 \mathrm{H}$, $\mathrm{dd}, J=1.6,6.3 \mathrm{~Hz}), 4.72(2 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.48(9 \mathrm{H}$, s), $1.41(9 \mathrm{H}, \mathrm{s}), 1.35(9 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.24(3 \mathrm{H}, \mathrm{s}), 0.18(3 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.7, 149.3, 144.5, 143.5, 139.1, 132.6, 128.3, 127.1, 125.6, 124.6, 124.3, 122.5, 120.8, 120.7, 99.7, 89.0, 88.2, 83.9, 83.7, 74.7, 71.3, 65.8, 62.6, 27.8, 27.6, 25.6, 18.2, 15.2, -3.0. HRMS calcd for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{SiS}\left(\mathrm{M}^{+}+1\right)$ 884.3096. Found 884.3108 .

12 β-Carbonate Derivative 35. A solution of $34(264 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in dichloromethane $(6.4 \mathrm{~mL})$ under argon at $0^{\circ} \mathrm{C}$ was treated with methyl chloroformate ($500 \mu \mathrm{~L}$), followed by pyridine ($500 \mu \mathrm{~L}$), and the mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min . After dilution with dichloromethane $(10 \mathrm{~mL})$, the solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{CuSO}_{4}(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. Purification by plc eluting with $40 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes gave 35 ($208 \mathrm{mg}, 74 \%$). IR (film) 2981, 2933, 2858, 1798, 1767, 1594, $1520 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.07(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 8.52(1 \mathrm{H}, \mathrm{dd}, J=2.3,9.0 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{dd}, J=3.9,9.0 \mathrm{~Hz}), 6.39(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz})$, $6.11(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.96(1 \mathrm{H}, \mathrm{dd}, J=9.5,1.3 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{s})$, $4.77(1 \mathrm{H}, \mathrm{dd}, J=3.9,12.9 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{dd}, J=9.0,12.9 \mathrm{~Hz}), 3.79$ $(3 \mathrm{H}, \mathrm{s}), 1.49(9 \mathrm{H}, \mathrm{s}), 1.36(9 \mathrm{H}, \mathrm{s}), 1.33(9 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.26(3 \mathrm{H}$, $\mathrm{s}), 0.20(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,154.0,150.4$, $149.3,148.9,144.5,143.2,139.2,137.6,128.9,128.4,128.1,126.4$, 125.7, 124.4, 124.3, 123.4, 120.8, 120.7, 99.1, 95.9, 89.3, 88.9, 84.1, $83.9,83.8,74.8,71.1,67.2,65.8,55.4,27.9,27.6,25.7,18.3,15.3$, -2.9. HRMS calcd for $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{16} \mathrm{SiS}\left(\mathrm{M}^{+}\right)$941.3072. Found 941.3042.

14-Alcohol 36. To a solution of 35 ($283 \mathrm{mg}, 0.3 \mathrm{mmol}$) in tetrahydrofuran (2 mL) under argon at room temperature was added
thiophenol $(100 \mu \mathrm{~L})$ followed by pyridine $(100 \mu \mathrm{~L})$. After stirring at room temperature for 45 min , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (10 $\mathrm{mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{CuSO}_{4}(5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to give a residue which was purified by plc eluting with $60 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to give $36(195 \mathrm{mg}, 87 \%)$. IR (film) 3544 , 2988, 2933, 2858, 1796, $1762 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.49(1 \mathrm{H}, \mathrm{dd}, J=7.2,8.0 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 6.12(1 \mathrm{H}, \mathrm{d}$, $J=9.5 \mathrm{~Hz}), 5.95(1 \mathrm{H}, \mathrm{dd}, J=9.5,1.7 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{s}), 4.35-4.22$ $(1 \mathrm{H}, \mathrm{m}), 4.12-3.98(1 \mathrm{H}, \mathrm{m}), 2.0(1 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 1.45(9 \mathrm{H}, \mathrm{s}), 1.43$ $(9 \mathrm{H}, \mathrm{s}), 1.35(9 \mathrm{H}, \mathrm{s}), 0.94(9 \mathrm{H}, \mathrm{s}), 0.28(3 \mathrm{H}, \mathrm{s}), 0.23(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,150.2,149.3,149.2,143.1,134.7$, 130.7, 128.9, 128.4, 126.7, 124.0, 123.2, 114.4, 99.8, 96.0, 88.9, 88.8, $83.8,71.1,67.3,60.3,55.6,27.9,27.6,25.8,18.4,-2.9$. HRMS calcd for $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{NO}_{12} \mathrm{Si}\left(\mathrm{M}^{+}\right) 743.3337$. Found 743.3340.

14-Mesylate 37. A solution of $36(153 \mathrm{mg}, 0.205 \mathrm{mmol})$ in dichloromethane (2.52 mL) under argon at $0^{\circ} \mathrm{C}$ was treated with methanesulfonic anhydride (115 mg) and triethylamine ($140 \mu \mathrm{~L}$), and the mixture stirred at $0^{\circ} \mathrm{C}$ for 1 h . Purification by plc gave 37 (139 $\mathrm{mg}, 83 \%$). IR (film) 2957, 2939, 1798, $1760 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.49(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 6.41(1 \mathrm{H}, \mathrm{dd}, J=3.1,8.2$ $\mathrm{Hz}), 6.10(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 5.96(1 \mathrm{H}, \mathrm{dd}, J=9.5,1.4 \mathrm{~Hz}), 5.81$ $(1 \mathrm{H}, \mathrm{s}), 5.08(1 \mathrm{H}, \mathrm{dd}, J=3.1,14 \mathrm{~Hz}), 4.87(1 \mathrm{H}, \mathrm{dd}, J=8.2,14 \mathrm{~Hz})$, $3.84(3 \mathrm{H}, \mathrm{s}), 2.96(3 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.44(9 \mathrm{H}, \mathrm{s}), 1.36(9 \mathrm{H}, \mathrm{s}), 0.95$ $(9 \mathrm{H}, \mathrm{s}), 0.28(3 \mathrm{H}, \mathrm{s}), 0.23(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $154.0,150.1,149.1,149.0,143.0,137.3,129.1,128.0,126.4,124.7$, $124.3,122.8,99.2,95.8,89.5,89.1,84.1,83.9,71.2,68.7,67.2,55.5$, 37.7, 27.8, 27.6, 25.8, 18.3, 3.0, -2.9. HRMS calcd for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{NO}_{14-}$ SiS $\left(\mathrm{M}^{+}+1\right) 822.3191$. Found 822.3201.

14-Thioacetate 38. To a solution of $37(139 \mathrm{mg}, 0.17 \mathrm{mmol})$ in acetone (1.24 mL) under argon at $0{ }^{\circ} \mathrm{C}$ was added a suspension of potassium thioacetate $(40 \mathrm{mg})$ in acetone $(2.18 \mathrm{~mL})$ in one portion by pipet. The mixture was warmed to room temperature, stirred for 2.5 h , diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, washed with water $(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation in vacuo, followed by purification of the residue by plc eluting with $60 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes, gave 38 ($110 \mathrm{mg}, 81 \%$). Mp $170-171{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O} /$ hexanes, dec). IR (film) 2980, 2956, 2931, 1797, 1760, $1694 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.53(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{dd}, J=$ $7.2,8.9 \mathrm{~Hz}), 6.06(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 5.93(1 \mathrm{H}, \mathrm{dd}, J=9.3,1.3 \mathrm{~Hz})$, $5.77(1 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.73(2 \mathrm{H}, \mathrm{dd}, J=9.2,8.9 \mathrm{~Hz}), 2.28(3 \mathrm{H}, \mathrm{s})$, $1.43(9 \mathrm{H}, \mathrm{s}), 1.42(9 \mathrm{H}, \mathrm{s}), 1.35(9 \mathrm{H}, \mathrm{s}), 0.91(9 \mathrm{H}, \mathrm{s}), 0.25(3 \mathrm{H}, \mathrm{s}), 0.18$ $(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.3,172.3,154.3,150.1,149.1$, $142.7,134.7,129.2,128.9,127.2,126.2,124.2,122.9,99.9,96.2,89.1$, 88.8, 83.7, 83.6, 71.4, 67.6, 55.3, 30.3, 29.1, 27.8, 27.6, 25.7, 18.4, -2.9. HRMS calcd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{NO}_{12} \mathrm{SiS}(\mathrm{M}+)$ 801.3214. Found 801.3198.

Protected Trisulfide 39. To a solution of $38(10.3 \mathrm{mg}, 0.013 \mathrm{mmol})$ in tetrahydrofuran ($370 \mu \mathrm{~L}$) under argon at $-78^{\circ} \mathrm{C}$ was added DIBAL-H ($200 \mu \mathrm{~L}$ of a 1 M solution in dichloromethane), and the mixture stirred at $-78^{\circ} \mathrm{C}$ for 1.3 h . The reaction was quenched by addition of MeOH (4 drops) and diluted with $\mathrm{EtOAc}(1 \mathrm{~mL})$. The mixture was washed with Rochelle's salt (2 mL), and the organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was dissolved in dichloromethane (1 mL), and Harpp's reagent (5 mg) added. After 30 min the mixture was concentrated in vacuo, and the residue purified by plc eluting first with $60 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes, reloaded, and eluted with $\mathrm{Et}_{2} \mathrm{O} /$ dichloromethane/hexanes (10:20:70) to give 39 ($5.7 \mathrm{mg}, 52 \%, 90 \%$ based on 5.3 mg recovered starting material). IR (film) 2931, 1796, $1761 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.58$ $(1 \mathrm{H}, \mathrm{dd}, J=6.4,8.9 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{d}, J=$ $9.4 \mathrm{~Hz}), 5.94(1 \mathrm{H}, \mathrm{dd}, J=9.4,1.3 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{s}), 3.87(1 \mathrm{H}, \mathrm{dd}, J$ $=6.4,14.7 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.69(1 \mathrm{H}, \mathrm{dd}, J=8.9,14.7 \mathrm{~Hz}), 2.52$ $(3 \mathrm{H}, \mathrm{s}), 1.44(9 \mathrm{H}, \mathrm{s}), 1.43(9 \mathrm{H}, \mathrm{s}), 1.36(9 \mathrm{H}, \mathrm{s}), 0.96(9 \mathrm{H}, \mathrm{s}), 0.28(3 \mathrm{H}$, s), $0.23(3 \mathrm{H}, \mathrm{s})$. HRMS calcd for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{NO}_{11} \mathrm{SiS}_{3}\left(\mathrm{M}^{+}+1\right) 838.2785$. Found 838.2774.

3-Oxotrisulfide 41 and 12,14-Cyclic Sulfide 42. To a solution of $39(3 \mathrm{mg}, 3.5 \mu \mathrm{~mol})$ in dichloromethane $(150 \mu \mathrm{~L})$ under argon at room temperature was added triethylamine (1 drop), followed by triethylsilyl trifluoromethanesulfonate (2 drops). After 15 min the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ and washed with water $(1.0 \mathrm{~mL})$. After drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration the products were purified by plc, eluting with $50 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to give $\mathbf{4 2}(1 \mathrm{mg}, 49 \%)$ and the trisulfide 41 (1 mg, 39\%). IR (film) 2959, 2929, 2855, 1799, 1764, $1695 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(1 \mathrm{H}, \mathrm{dd}, J=5.0,9.0 \mathrm{~Hz}), 6.43$ $(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 6.00(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{dd}, J=9.4$, $1.3 \mathrm{~Hz}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.79(1 \mathrm{H}, \mathrm{dd}, J=5.0,12.8 \mathrm{~Hz}), 3.60(1 \mathrm{H}, \mathrm{dd}$, $J=9.0,12.8 \mathrm{~Hz}), 3.16(1 \mathrm{H}, \mathrm{d}, J=18 \mathrm{~Hz}), 2.70(1 \mathrm{H}, \mathrm{d}, J=18 \mathrm{~Hz})$, $2.51(3 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.40(9 \mathrm{H}, \mathrm{s}), 0.96(9 \mathrm{H}, \mathrm{s}), 0.28(3 \mathrm{H}, \mathrm{s}), 0.26$ (3H, s). HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{NO}_{9} \mathrm{SiS}_{3}\left(\mathrm{M}^{+}\right)$737.2182. Found 737.2176.

11,14-Cyclic Sulfide 44. To a solution of $\mathbf{3 8}(2.5 \mathrm{mg}, 3.12 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(100 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added solid NaBH_{4}. The mixture was stirred for 2.5 h , quenched with acetone (1 mL), and purified by plc, eluting with $60 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to give 44 ($1 \mathrm{mg}, 42 \%$). IR (film) 2932, 1795, $1760 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.38$ $(1 \mathrm{H}, \mathrm{dd}, J=3.2,10.7 \mathrm{~Hz}), 6.29-6.20(2 \mathrm{H}, \mathrm{m}), 6.04(1 \mathrm{H}, \mathrm{s}), 5.90$ $(1 \mathrm{H}, \mathrm{s}), 5.59(1 \mathrm{H}, \mathrm{dd}, J=2.1,10.7 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.76(1 \mathrm{H}, \mathrm{dd}, J$ $=9.2,12.2 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{dd}, J=9.2,12.2 \mathrm{~Hz}), 1.50(9 \mathrm{H}, \mathrm{s}), 1.44$ $(9 \mathrm{H}, \mathrm{s}), 1.43(9 \mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.20(6 \mathrm{H}, \mathrm{s})$. HRMS calcd for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{NO}_{11} \mathrm{SiS}\left(\mathrm{M}^{+}+1\right) 760.3187$. Found 760.3193.

3-Oxo-12,14-cyclic Sulfide 42. A solution of 39 ($2 \mathrm{mg}, 2.4 \mu \mathrm{~mol}$) in dichloromethane $(135 \mu \mathrm{~L})$ and dioxane $(15 \mu \mathrm{~L})$ under argon at room temperature was treated with methane sulfonic acid (2 drops). After 30 min , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ and washed with aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. After drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation in vacuo, the product was purified by plc eluting with $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes to give 42 ($1 \mathrm{mg}, 86 \%$). IR (film) 2919, 2850, 1727, $16731615 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.18(1 \mathrm{H}, \mathrm{t}, J=4.3 \mathrm{~Hz}), 5.73(2 \mathrm{H}, \mathrm{m})$, $4.58(1 \mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}, \mathrm{bs}), 3.66(1 \mathrm{H}, \mathrm{dd}, J=4.3,18 \mathrm{~Hz}), 3.35(1 \mathrm{H}$, dd, $J=4.3,18 \mathrm{~Hz}), 2.92(2 \mathrm{H}, \mathrm{ABq}, J=16.3 \mathrm{~Hz}), 1.23(9 \mathrm{H}, \mathrm{s}), 0.94$ $(9 \mathrm{H}, \mathrm{s}), 0.23(6 \mathrm{H}, \mathrm{s})$. HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SiS}\left(\mathrm{M}^{+}\right) 483.1900$. Found 483.1900.

2-Amino-3-keto-12,14-cyclic Sulfide 43. A solution of 39 (9 mg , $0.011 \mathrm{mmol})$ in dichloromethane $(200 \mu \mathrm{~L})$ under argon was treated with 2,6-lutidine (1 drop) followed by triethylsilyl trifluoromethanesulfonate (2 drops). After 20 min at room temperature, further triethylsilyl trifluoromethanesulfonate (2 drops) was added. The mixture was stirred for another 20 min , extracted into $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$, and washed with water $(2 \mathrm{~mL})$. After drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation in vacuo, the residue was purified by plc, eluting with $40 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes, to give 43 ($3.1 \mathrm{mg}, 76 \%$). IR (film) 3371, 2929, 2856, 1732, $1667,1615 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.17(1 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz})$, $5.72(2 \mathrm{H}, \mathrm{s}), 4.58(1 \mathrm{H}, \mathrm{s}), 3.91(2 \mathrm{H}, \mathrm{bs}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=4.4,18.3$ $\mathrm{Hz}), 3.35(1 \mathrm{H}, \mathrm{dd}, J=4.4,18.3 \mathrm{~Hz}), 2.92(2 \mathrm{H}, \mathrm{ABq}, J=16.4 \mathrm{~Hz})$, $0.92(9 \mathrm{H}, \mathrm{s}), 0.22(6 \mathrm{H}, \mathrm{s})$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SiS}\left(\mathrm{M}^{+}+1\right)$ 384.1454. Found 384.1453 .

Acknowledgment. The National Institutes of Health (CA 50512), National Science Foundation, Bristol-Myers Squibb and The Robert A. Welch Foundation are thanked for their support of this research. Dr. Vince Lynch (University of Texas at Austin) is thanked for the X-ray crystal structures of 28 and 38.

Supporting Information Available: Complete experimental details and spectral information for compounds 6 and 9 and X-ray crystallographic data for 28 and 38 (42 pages). See any current masthead page for ordering and Internet access instructions.

JA970743T

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, July 1, 1997.
 (1) Enediyne Antibiotics as Antitumor Agents; Borders, D. B., Doyle, T. W., Eds.; Dekker, Inc.: New York, 1995. Lee, M. D.; Durr, F. E.; Hinman, L. M.; Hamann, P. R.; Ellestad, G. A. Advances in Medicinal Chemistry; Maryanoff, B. E., Maryanoff, C. A., Eds.; JAI Press: Greenwich, CT, 1993; Vol. 2. Lee, M. D.; Ellestad, G. A.; Borders, D. B. Acc. Chem. Res. 1991, 24, 235. Nicolaou, K. C.; Smith, A. L. Acc. Chem. Res. 1992, 25, 497. Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387. Lee, M. D.; Dunne, T. S.; Seigel, M. M.; Chang, C. C.; Morton, G. O.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3464. Lee, M. D.; Dunne, T. S.; Chang, C. C.; Ellestad, G. A.; Seigel, M. M.; Morton, G. O.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3466. For esperamicin, see: Golik, J.; Dubay, G.; Groenwold, G.; Kawaguchi, M.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J. Am. Chem. Soc. 1987, 109, 3462. Golik, J.; Clardy, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, M.; Saitoh, K.; Doyle, T. W. J. Am. Chem. Soc. 1987, 109, 3461. Konishi, M.; Ohkuma, H.; Saitoh, K.; Kawaguchi, H.; Golik, J.; Dubay, G.; Groenewold, G.; Krishnan, B.; Doyle, T. W. J. Antibiot. 1985, 38, 1605.
 (2) Shair, M. D.; Danishefsky, S. J. J. Org. Chem. 1996, 61, 16 and references therein. Cabal, M. P.; Coleman, R. S.; Danishefsky, S. J. J. Am. Chem. Soc. 1990, 112, 3253. Haseltine, J. N.; Cabal, M. P.; Mantlo, N. B.; Iwasawa, N.; Yamashita, D. S.; Coleman, R. S.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1991, 113, 3850.
 (3) Nicolaou, K. C. Angew. Chem., Int. Ed. Engl. 1993, 32, 1377, and references therein. Nicolaou, K. C.; Hummel, W.; Pitsinos, E. N.; Nakada, M.; Smith, A. L.; Shibayama, K.; Saimoto, H. J. Am. Chem. Soc. 1992, 114, 10082.
 (4) Clive, D. L. J.; Bo, Y.; Tao, Y.; Daigneault, S.; Wu, Y-J.; Meignan G. J. Am. Chem. Soc. 1996, 118, 4904.
 (5) For a recent extensive review, see: Lhermitte, H.; Grierson, D. S. Contemporary Organic Synthesis 1996, 3, 41 and 1996, 3, 93. Kende, A. S.; Smith, C. A. Tetrahedron Lett. 1988, 29, 4217. Schreiber, S. L.; Kiessling, L. L. J. Am. Chem. Soc. 1988, 110, 631. Schreiber, S. L.; Kiessling, L. L. Tetrahedron Lett. 1989, 30, 433. Maier, M. E.; Brandstetter, T. Tetrahedron Lett. 1992, 33, 7511. Maier, M. E.; Brandstetter, T. Liebigs Ann. Chem. 1993, 1009. Tomioka, K.; Fujita, H.; Koga, K. Tetrahedron Lett. 1989, 30, 851.
 (6) For a review of our previous work in this area, see: Magnus, P. Tetrahedron 1994, 50, 1397. Magnus, P. The Use of $\eta^{2} \mathrm{Co}_{2}(\mathrm{CO})_{6}$-Acetylene Complexes for the Synthesis of Enediyne Antitumor Antibiotics. SmithKline Beecham Research Symposium, Organometallic Reagents in Organic Synthesis; Academic Press Ltd.: 1994; Chapter 1, p 1.

[^1]: (7) Kadow, J. F.; Tun, M. M.; Vyas, D. M.; Wittman, M. D.; Doyle, T. W. Tetrahedron Lett. 1992, 33, 1423. Kadow, J. F.; Cook, D. J.; Doyle, T. W.; Langley, D. R.; Pham, K. M.; Vyas, D. M.; Wittman, M. D. Tetrahedron 1994, 50, 1519. Dr. John Kadow is thanked for exchanges of information concerning the conversion of 16 into 20.
 (8) Magnus, P.; Lewis, R. T.; Bennett, F. J. Chem. Soc., Chem. Commun. 1989, 916. Magnus, P.; Lewis, R.; Bennett, F. J. Am. Chem. Soc. 1992, 114, 2560.

[^2]: (9) Treatment of the diol 33 with thiolacetic acid under Mitsunobu conditions gave the cyclic ether 33a (70%). Using the modified reaction conditions reported by Danishefsky (ref 2) also gave 33a. Consequently, we were forced to proceed by the protection deprotection sequence depicted in Scheme 4, as were both Nicolaou and Clive (refs 3 and 4), but using different protecting groups.

[^3]: (10) The efforts to introduce the C2-amino group into 7 has lead to a number of new reactions involving $\mathrm{PhIO} /$ trimethylsilyl azide chemistry and other electrophilic aminating species. Magnus, P.; Lacour, J.; Evans, P. A.; Roe, M. B.; Hulme, C. J. Am. Chem. Soc. 1996, 118, 3406. Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 3993. Magnus, P.; Lacour, J.; Coldham, I.; Mugrage, B.; Bauta, W. B. Tetrahedron, 1995, 51, 11087. Magnus, P.; Barth, L. Tetrahedron 1995, 51, 11075. Magnus, P.; Lacour, J.; Weber, W. J. Am. Chem. Soc. 1993, 115, 9347. Magnus, P.; Hulme, C.; Weber, W. J. Am. Chem. Soc. 1994, 116, 4501.
 (11) Magnus, P.; Eisenbeis, S. A.; Fairhurst, R. A.; Iliadis, T.; Magnus, N. A.; Parry, D. J. Am. Chem. Soc. 1997, 119, 5591-5605.
 (12) Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 28, 3313. Ratovelomanana, V.; Linstrumelle, G. Tetrahedron Lett. 1984, 25, 6001. Guillerm, D.; Linstrumelle, G. Tetrahedron Lett. 1986, 27, 5857. Guillerm. D.; Linstumelle, G. Tetrahedron Lett. 1985, 26, 3811.
 (13) Tsuji, J.; Minami, I.; Shimizu, I.; Kataoka, H. Chem. Lett. 1984, 1133. Shimizu, I.; Tsuji, J. J. Am. Chem. Soc. 1982, 104, 5844.
 (14) For an example of the Saigo oxidation on a $\eta^{2} \mathrm{Co}_{2}(\mathrm{CO})_{6}$-proparglic alcohol see: Marshall, J. A.; Gung, W. Y. Tetrahedron Lett. 1989, 30, 309. Narasaka, K.; Morikawa, A.; Saigo, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1977, 50, 2773. Meyers, A. I.; Comins, D. L.; Roland, D. M.; Henning, R.; Shimizu, K. J. Am. Chem. Soc. 1978, 101, 7104.
 (15) Itoh, A.; Ozawa, S.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1981, 54, 274.
 (16) Nicolaou, K. C.; Claremon, D. A.; Barnette, W. E.; Seitz, S. P. J. Am. Chem. Soc. 1979, 101, 3704. Nicolaou, K. C.; Petasis, N. A.; Claremon, D. A. Tetrahedron 1985, 41, 4835.

[^4]: (18) The best results were obtained with N-(phenylselenenyl)phthalimide that was crystallized to constant melting point. While we could not detect impurities by TLC and NMR, the yields with unpurified reagent were $<30 \%$, and sometimes the substrate 21 was completely destroyed.
 (19) Magnus, P.; Barth, L. Tetrahedron 1995, 51, 11075. Patonay, T.; Hoffman, R. V. J. Org. Chem. 1995, 60, 2368. Effenberger, F.; Beisswenger, T.; Az, R. Chem. Ber. 1985, 118, 4869. Effenberger, F.; Beisswenger, T Chem. Ber. 1984, 117, 1497. α-Azidoketones (iv) undergo elimination of nitrogen to give an imine (v), which usually tautomerizes to the enamine (vi).

[^5]: (23) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.
 (24) Rathke, M. W.; Nowak, M. J. Org. Chem. 1985, 50, 2624.

[^6]: (26) Letsinger, R. L.; Fontaine, J.; Mahadevan, V.; Schexnayder, D. A.; Leone, R. E. J. Org. Chem. 1964, 29, 2615.

[^7]: (27) Harpp, D. N. Studies in Organic Chemistry 28. Perspectives in The Organic Chemistry of Sulfur; Zwanenburg, B., Klunder, A. H., Eds.; Elsevier: Amsterdam, 1987. Harpp, D. N.; Steliou, K.; Chen, T. H. J. Am. Chem. Soc. 1978, 100, 1222. Harpp, D. N.; Ash, D. K. Int. J. Sulfur. Chem. A 1971, 1, 211. Harpp, D. N.; Ash, D. K. Int. J. Sulfur. Chem. A 1971, 1, 57. Sullivan, A. B.; Boustany, K. Int. J. Sulfur. Chem. A 1971, 1, 207. Mott, A. W.; Barany, G. Synthesis 1984, 657.
 (28) McGahren, W. J.; Ding, W-D.; Ellestad, G. A. Disulfide Calicheamicins and the Chemistry of the Allylic Trisulfide group. Enediyne Antibiotics as Antitumor Agents; Borders, D. B., Doyle, T. W., Eds.; Dekker, Inc.: New York, 1995; Chapter 5, p 75.
 (29) Exposure of $\mathbf{3 7}$ to the standard Mitsunobu reaction conditions $\left(\mathrm{PPh}_{3} /\right.$ DEAD) in the presence of the Soderquist thiol (HSSiPr ${ }_{3}{ }^{i}$), (Miranda, E. I.; Diaz, M. J.; Rosado, I.; Soderquist, J. A. Tetrahedron Lett. 1994, 35, 3221) resulted in clean conversion into the protected sulfide xiii (45\%). Exposure of xiii to $\mathrm{HF} /$ pyridine in the presence of the Harpp reagent (PhthNSSMe) gave the trisulfide 39 in low yield. Whereas, treatment of xiii with CsF/ DMF resulted in clean formation of the disulfide 40 (70\%). Presumably, in the latter process the thiolate xiv attacks the terminal sulfur atom with PhthNS- as the leaving group, and in the former reaction (HF/pyridine) the thiol displaces PhthN-.

[^8]: (30) Lee, M. D. Identification, Isolation, and Structure Determination. Enediyne Antibiotics as Antitumor Agents; Borders, D. B., Doyle, T. W., Eds.; Dekker, Inc.: New York, 1995; Chapter 4, p 49.
 (31) Hallett, D. Unpublished results from this laboratory.

